vignettes/introduction-to-exoplanets.Rmd
introduction-to-exoplanets.Rmd
The exoplanet package is a minimal interface to the NASA Exoplanet Archive. The goal is to make it as easy as possible to interact with the API from R. Some key features are:
exo
: the main function for pulling data from the API via table namesexo_kelt
, exo_kepler
, and exo_wasp
: the functions for pulling time series dataexo_summary
: a function for summarising the databaseThere are 3 ways to access data from the API:
exo
: provide a table name, see exo_tables
for all available tables. Note this function doesn’t support time series tables.exo_kelt
, exo_kepler
, and exo_wasp
: no table name needed, they are hardcoded and designed for a specific table, just provide the apporpriate arguments.exo_raw
: provide the raw URL.By default, exo
will pull from the exoplanets table.
library(exoplanets)
df_exo <- exo()
#> * <https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=exoplanets>
df_exo
#> # A tibble: 4,352 x 82
#> pl_hostname pl_letter pl_name pl_discmethod pl_controvflag pl_pnum pl_orbper
#> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 Kepler-128 b Kepler-… Transit 0 2 15.1
#> 2 Kepler-128 c Kepler-… Transit 0 2 22.8
#> 3 Kepler-129 b Kepler-… Transit 0 2 15.8
#> 4 Kepler-129 c Kepler-… Transit 0 2 82.2
#> 5 Kepler-130 b Kepler-… Transit 0 3 8.46
#> 6 Kepler-130 c Kepler-… Transit 0 3 27.5
#> 7 Kepler-130 d Kepler-… Transit 0 3 87.5
#> 8 Kepler-131 b Kepler-… Transit 0 2 16.1
#> 9 Kepler-131 c Kepler-… Transit 0 2 25.5
#> 10 Kepler-132 b Kepler-… Transit 0 4 6.18
#> # … with 4,342 more rows, and 75 more variables: pl_orbpererr1 <dbl>,
#> # pl_orbpererr2 <dbl>, pl_orbperlim <dbl>, pl_orbpern <dbl>,
#> # pl_orbsmax <dbl>, pl_orbsmaxerr1 <dbl>, pl_orbsmaxerr2 <dbl>,
#> # pl_orbsmaxlim <dbl>, pl_orbsmaxn <dbl>, pl_orbeccen <dbl>,
#> # pl_orbeccenerr1 <dbl>, pl_orbeccenerr2 <dbl>, pl_orbeccenlim <dbl>,
#> # pl_orbeccenn <dbl>, pl_orbincl <dbl>, pl_orbinclerr1 <dbl>,
#> # pl_orbinclerr2 <dbl>, pl_orbincllim <dbl>, pl_orbincln <dbl>,
#> # pl_bmassj <dbl>, pl_bmassjerr1 <dbl>, pl_bmassjerr2 <dbl>,
#> # pl_bmassjlim <dbl>, pl_bmassn <dbl>, pl_bmassprov <chr>, pl_radj <dbl>,
#> # pl_radjerr1 <dbl>, pl_radjerr2 <dbl>, pl_radjlim <dbl>, pl_radn <dbl>,
#> # pl_dens <dbl>, pl_denserr1 <dbl>, pl_denserr2 <dbl>, pl_denslim <dbl>,
#> # pl_densn <dbl>, pl_ttvflag <dbl>, pl_kepflag <dbl>, pl_k2flag <dbl>,
#> # ra_str <chr>, dec_str <chr>, ra <dbl>, st_raerr <dbl>, dec <dbl>,
#> # st_decerr <dbl>, st_posn <dbl>, st_dist <dbl>, st_disterr1 <dbl>,
#> # st_disterr2 <dbl>, st_distlim <dbl>, st_distn <dbl>, st_optmag <dbl>,
#> # st_optmagerr <dbl>, st_optmaglim <dbl>, st_optband <chr>, gaia_gmag <dbl>,
#> # gaia_gmagerr <lgl>, gaia_gmaglim <dbl>, st_teff <dbl>, st_tefferr1 <dbl>,
#> # st_tefferr2 <dbl>, st_tefflim <dbl>, st_teffn <dbl>, st_mass <dbl>,
#> # st_masserr1 <dbl>, st_masserr2 <dbl>, st_masslim <dbl>, st_massn <dbl>,
#> # st_rad <dbl>, st_raderr1 <dbl>, st_raderr2 <dbl>, st_radlim <dbl>,
#> # st_radn <dbl>, pl_nnotes <dbl>, rowupdate <date>, pl_facility <chr>
If you want to explore other datasets, take a look at exo_tables
a list that contains all available data. One nice feature of having a list of available data is that we can utilize autocompletion (assuming you’re using RStudio). Autocompletion paired with exo
is an easy solution to pull whatever data you’re interested in, no need to memorize the table name.
# available data
str(exo_tables)
#> List of 32
#> $ exoplanets : chr "exoplanets"
#> $ compositepars : chr "compositepars"
#> $ exomultpars : chr "exomultpars"
#> $ aliastable : chr "aliastable"
#> $ microlensing : chr "microlensing"
#> $ cumulative : chr "cumulative"
#> $ q1_q17_dr25_sup_koi : chr "q1_q17_dr25_sup_koi"
#> $ q1_q17_dr25_koi : chr "q1_q17_dr25_koi"
#> $ q1_q17_dr24_koi : chr "q1_q17_dr24_koi"
#> $ q1_q16_koi : chr "q1_q16_koi"
#> $ q1_q12_koi : chr "q1_q12_koi"
#> $ q1_q8_koi : chr "q1_q8_koi"
#> $ q1_q6_koi : chr "q1_q6_koi"
#> $ q1_q17_dr25_tce : chr "q1_q17_dr25_tce"
#> $ q1_q17_dr24_tce : chr "q1_q17_dr24_tce"
#> $ q1_q16_tce : chr "q1_q16_tce"
#> $ q1_q12_tce : chr "q1_q12_tce"
#> $ keplerstellar : chr "keplerstellar"
#> $ q1_q17_dr25_supp_stellar: chr "q1_q17_dr25_supp_stellar"
#> $ q1_q17_dr25_stellar : chr "q1_q17_dr25_stellar"
#> $ q1_q17_dr24_stellar : chr "q1_q17_dr24_stellar"
#> $ q1_q16_stellar : chr "q1_q16_stellar"
#> $ q1_q12_stellar : chr "q1_q12_stellar"
#> $ keplertimeseries : chr "keplertimeseries"
#> $ keplernames : chr "keplernames"
#> $ kelttimeseries : chr "kelttimeseries"
#> $ superwasptimeseries : chr "superwasptimeseries"
#> $ k2targets : chr "k2targets"
#> $ k2candidates : chr "k2candidates"
#> $ k2names : chr "k2names"
#> $ missionstars : chr "missionstars"
#> $ mission_exocat : chr "mission_exocat"
# using exo_tables with exo
df_stars <- exo(exo_tables$missionstars)
#> * <https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=missionstars>
df_stars
#> # A tibble: 360 x 27
#> star_name hip_name hd_name gj_name tm_name st_exocatflag st_coronagflag
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
#> 1 HIP 3419 HIP 3419 HD 4128 GJ 31 2MASS J004… 1 1
#> 2 HIP 3765 HIP 3765 HD 4628 GJ 33 2MASS J004… 1 1
#> 3 HIP 3821 A HIP 3821… HD 4614 GJ 34 A 2MASS J004… 1 1
#> 4 HIP 3909 HIP 3909 HD 4813 GJ 37 2MASS J005… 1 0
#> 5 HIP 4151 HIP 4151 HD 5015 GJ 41 2MASS J005… 1 1
#> 6 HIP 5336 HIP 5336 HD 6582 GJ 53 A 2MASS J010… 1 1
#> 7 HIP 5862 HIP 5862 HD 7570 GJ 55 2MASS J011… 1 1
#> 8 ups And HIP 7513 HD 9826 GJ 61 A 2MASS J013… 1 1
#> 9 HIP 7751 B HIP 7751… HD 103… GJ 66 B 2MASS J013… 1 0
#> 10 HIP 7918 HIP 7918 HD 103… GJ 67 2MASS J014… 1 1
#> # … with 350 more rows, and 20 more variables: st_starshadeflag <dbl>,
#> # st_wfirstflag <dbl>, st_lbtiflag <dbl>, st_rvflag <dbl>, st_ppnum <dbl>,
#> # rastr <chr>, decstr <chr>, st_dist <dbl>, st_disterr1 <dbl>,
#> # st_disterr2 <dbl>, st_vmag <dbl>, st_vmagerr <dbl>, st_vmagsrc <chr>,
#> # st_bmv <dbl>, st_bmverr <dbl>, st_bmvsrc <chr>, st_spttype <chr>,
#> # st_lbol <dbl>, st_lbolerr <dbl>, st_lbolsrc <chr>
There is one caveat to exo
, it is not equipped to handle some of the available datasets, specifically time series datasets. This is because time series datasets are very large and require additional parameters to narrow in on a subset of the data.
Instead of cramming additional functionality into exo
, 3 functions have been added specifically for time series data, they are:
exo_kelt
: for the kelttimeseries
tableexo_kepler
: for the keplertimeseries
tableexo_wasp
: for the superwasptimeseries
table
df_wasp <- exo_wasp(sourceid = "1SWASP J191645.46+474912.3")
#> * <https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?&table=superwasptimeseries&sourceid=1SWASP%20J191645.46+474912.3>
df_wasp
#> # A tibble: 1 x 17
#> sourceid hjdstart hjdstop hjd_ref obsstart obsstop
#> <chr> <dbl> <dbl> <dbl> <dttm> <dttm>
#> 1 1SWASP J1916… 2453129. 2.45e6 2.45e6 2004-05-03 03:07:41 2008-08-10 02:47:57
#> # … with 11 more variables: tstart <dbl>, tstop <dbl>, ra <dbl>, dec <dbl>,
#> # wasp_mag <dbl>, npts <dbl>, tile <chr>, tm_statnpts <dbl>, tm_median <dbl>,
#> # tm_stddevwrtmed <dbl>, tm_range595 <dbl>
The documentation has an excellent graphic to explain how the URL’s are constructed, see here. Generally, you will not need to touch exo_raw
, the exo
function and time series functions should be all you need. However, if you have a very specific query you might find exo_raw
to be helpful as the API supports SQL syntax in the URL.
x <- c(
base = "https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?",
table = "table=exoplanets",
columns = "&select=pl_hostname,ra,dec",
parameters = "&order=dec"
)
query <- paste(x, collapse = "")
df_raw <- exo_raw(query)
df_raw
#> # A tibble: 4,352 x 3
#> pl_hostname ra dec
#> <chr> <dbl> <dbl>
#> 1 HD 142022 A 243. -84.2
#> 2 HD 39091 84.3 -80.5
#> 3 HD 39091 84.3 -80.5
#> 4 HD 137388 234. -80.2
#> 5 GJ 3021 4.05 -79.9
#> 6 HD 63454 115. -78.3
#> 7 HD 212301 337. -77.7
#> 8 HD 97048 167. -77.7
#> 9 CHXR 73 167. -77.6
#> 10 HD 221420 353. -77.4
#> # … with 4,342 more rows